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Abstract

Sufferers of color vision deficiency (CVD) report that videogames rarely
take CVD into account during design. Sufferers of CVD are left at a dis-
tinct disadvantage during gameplay, especially when color is an integral
part of gameplay. Project Daltonismo aims to create a device that trans-
forms the set of colors used in a video signal, such that users who suffer
from CVD can more easily discern colors from one another. The afore-
mentioned device will be constructed on an FPGA. The device will have
access to the video signal by being connected between the video source
and display via a High Definition Multimedia Interface (HDMI) input and
an HDMI output. Color Transformations will be done by first convert-
ing the original image from the RGB (for Red, Green and Blue) color
space into a second color space, transformed to move colors out users’
ambiguous hue range, converted back into the RGB color space, and then
transformed once again, to minimize image distortion. Daltonization is
a popular technique of colorblindness transformation that will be investi-
gated and, based on feedback from users, may be used. Transformation
of the video signal will be done in real time at a minimum of 60Hz, with
much less than a frame of latency, taking advantage of the speed of the
FPGA.

1 Introduction

For this project we are looking to create a device that transforms the color
space for the people with CVD. The end goal is a device that will alter the color
space when plugged in between an HDMI source and HDMI sink requiring no
modification to either device to operate. It will have switches to switch between
different color filters for different types of CVD. We will consider our device a
success if video is outputted when inputted and color filters are applied when
switches are flipped. Previous work of getting HDMI passthrough on an FPGA
was done by Mike Field using VHDL on the Nexys Video FPGA [1]. Similar
work of making colors easier to differentiate was done by mapping words or
slashes to the colors [2].

2 Methods, Techniques, and Design

Our device will take HDMI as an input and output HDMI, while the signal is
internal to the FPGA, we will perform some color manipulation to make the
colors more differentiable (Figure 1).
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Figure 1: Block Diagram

2.1 Color Conversion

Color transformation begins by converting colors to a new color space from
RGB, the color space they are provided in by the HDMI signal. The colors are
then transformed within the new color space. After the new transformation,
colors are then converted back into RGB and are given one last operation from
within RGB in order to fine tune the output image (Figure 2).

The RGB color space is ubiquitous in cameras, computers, video sources and
video displays. For what RGB provides in ubiquity, it introduces new challenges
in difficulty of color transformation. Each color space provides its own benefits
and drawbacks, depending on the use case. In the case of Project Daltonismo,
transformations outside of RGB will be done within the LMS color space or
within the HSV color space, depending on what algorithm is used.
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Figure 2: Flowchart of Image transformation sequence.

2.1.1 Daltonization

Daltonization is an algorithm proposed to utilize the way the LMS color space
inherently supports a matrix of color responses, or a Chromatic Adaptation
Transform (CAT) matrix. Daltonization is preformed in four basic steps:

1. Convert RGB into LMS

2. Simulate colorblindness with a CAT matrix

3. Shift the colors that are mapped closely on the CAT matrix away from
each other

4. Convert LMS back into RGB

Since one can easily change how the different levels of colors are perceived in
the LMS color space, daltonization naturally lends itself to using the LMS color
space.

2.1.2 Red-Stripes Method

The Red-Stripes Method of color transformation, starts by converting into the
LMS color space, like daltonization, in order to detect which colors are closely
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mapped. The difference comes when the colors are converted into the HSL color
space. The HSL color space allows for easily brightening colors without altering
their saturation. The Red-Stripes uses this to brighten stripes in some of the
colors that would be hard to tell apart so that those which are brightened and
those which aren’t an be differentiated.

2.2 HDMI

High Definition Multimedia Interface(HDMI) is an interface capable of trans-
porting video and audio simultaneously. It uses four differential signaling wire
pairs, three for pixel data and one for the pixel clock. There are 10 bits sent
across each of the pixel data pairs for one transition of the clock pair [3].

HDMI was chosen as the transmission medium for this project because it
is very commonly used for video output on consoles and computers. To give
good compatibility with other devices, our project is capable of a maximum
resolution of 1920x1080 at 60Hz, the clock rate at this resolution is 148.5Mhz
and the bit rate on the three data pairs will be 1.485GHz.

2.2.1 TMDS Encoding

HDMI and DVI use a signal encoding technique called Transition Minimized
Differential Signaling (TMDS) to reduce the EMI that the cable experiences.
This encoding scheme performs either the XOR or the XNOR operation on the
inputted bit with the previously derived bit and adds a ninth bit to represent
whether XOR or XNOR was used (Figure 3). Next, a tenth bit is added to
represent whether the entire bit is inverted. This is done to maintain an overall
DC balance of the Differential signaling lines. Since neither Xor or Xnor is
the best choice in all cases (Figure 4), first a bit count is used to determine
the encoding used (Figure 5). This gets the maximum transitions to five, with
one more check on the least significant bit (Figure 6) the maximum number of
transitions are lowered to four.

Figure 3: TMDS Encoding [4]
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Figure 4: Xor vs. Xnor

Figure 5: First Optimization

Figure 6: Second Optimization

2.3 HDMI Signal Decoding

To decode the incoming HDMI signal, the data first gets aligned, this is done
by delaying the signal to match the internal clock phase using a delay primitive
(IDELAYE2). Then, the data needs to be converted from a serial data stream
into a parallel stream by instantiating a serial to parallel converter primitive
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(ISERDESE2). This converter is only capable of converting an 8-bit wide signal,
so two connected together are required for the 10-bit wide HDMI symbols.
At this point in the process, the parallel data is probably not aligned, this
is corrected by having the serial to parallel converter drop bits until the data
outputted is valid.

2.4 Build and Implementation

As all projects do, Project Daltonismo was met with a good number of challenges
that influenced how color blindness compensation was implemented.

2.4.1 Bitslipping

The initial design of the serial to parallel conversion had a switch tied to bit-
slipping, this was tedious as the switch would have to be flipped around five
times on average to get the data alignment correct. The solution applied to
correct this was to count the number of valid data symbols received, if one of
the symbols out of 65535 was invalid, it would bitslip and restart the count-
ing. This worked for certain devices but not others, this was due to the fact
that some devices output the data channels with the bits misaligned with the
other channels. To fix this the bitslipping process was applied to each channel
individually instead of applied to all three at once.

2.4.2 Matrix Multiplication

One of the first challenges reached was Matrix Multiplication. Matrix multi-
plication is useful for many color space transformations and is necessary for
the desired RGB-XYZ and XYZ-RGB transformations. The original imple-
mentation of Matrix Multiplication was a very naive solution of doing all the
multiplications necessary of all the input numbers and the constants that would
be placed in associated transformation matrix in order to complete a transfor-
mation. The very first problem with this method was that all numbers and
entered constants in System Verilog are stored as an unsigned integer represen-
tation of that number. This means that any decimal value more precise than
the 1’s place is truncated off, any numbers that grow in size too large lose data
due to multiplication overflow and that negative values are not represented in
any ways. To add onto this, each multiplication was done in one clock cycle.
Operating at the HDMI signal’s 60fps 1080p timing of 148.5 MHz, this required
the transistors in the FPGA to operate far faster than they are capable when
taking into account the propagation delay of such a large operation. The result
was a non-deterministic output, which still worked on an HDMI display, but
resulted in absolutely incorrect output and very significant visual artifacts.

2.4.3 Fixed-Point Number Representation

As a solution to the inadequate integer number representation, a specific fixed-
point number representation for the project was devised, with 10 whole number
bits (enough to represent the largest possible number during transformation)
and 13 decimal number bits (enough in order to accurately represent the smallest
possible number during transformation) and one sign bit place so that negative
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numbers could also be represented. Along with the fixed point implementa-
tion, multiplication for this specific fixed point was also implemented, handling
cases for negative numbers and handling the operation of shifting the numbers
correctly after multiplication in order to retain each bit’s correct significance.
Division was represented as a multiplication by a decimal. While the results
were correct for the fixed point multiplication, it did nothing to solve the issues
that existed with attempting to do all the necessary multiplications in one 148.5
MHz clock cycle, so visual artifacts remained and the color transformations be-
tween RGB and XYZ color spaces, never came to fruition.

2.4.4 HSV Transformation

With deadlines fast approaching on the project and with much work still to do
to get one colorblindness compensation method working, the color space trans-
formations between RGB and XYZ were not finished because transformations
between RGB and HSV were much simpler to implement than the matrix mul-
tiplication was to debug at the time. The implementation of transformations
between RGB and HSV color spaces went off largely without a hitch. The main
sticking point encountered was one that was all too familiar: pushing the FPGA
transistors faster than they’re comfortable with. In this case two instances 8 bit
integer divisions were being attempted every 148.5MHz clock cycle as apposed
to the nine instances of 24 bit fixed-point multiplications attempted in the pre-
viously attempted matrix multiplication. Since the load was significantly less
on the transistors for this operation, it was guessed that it would be able to be
accomplished in only one clock cycle. The propagation delay of even just the
8 bit division was too great to work correctly on a 60Hz 1080p HDMI signal,
but it was working properly on a 60Hz 640x480 pixel resolution HDMI signal,
due to the clock cycle being far smaller, somewhere closer to a 18.5 MHz clock,
allowing a good portion more time for operations to propagate. This lead to
the solution of pipelining the division operations.

2.4.5 Division Operation Pipelining

Pipelining the division operations allowed each division to take more clock cy-
cles, so that each small part would only introduce only a small propagation
delay, which was lesser than the time between each clock cycle. In exchange
for the ability to do more complex operations on an every clock cycle basis, the
output of the operation is essentially delayed by the number of operations which
have to be completed. Every clock cycle, the output of the current operation is
then clocked into the input of the next operation. This means that for the first
number of clock cycles equal to the number of operations to be completed for
a division, the output of the division operation is undefined and it also means
that non-pixel signals, such as the horizontal sync (HSync) and vertical sync
(VSync) also have to be delayed in order to match up with the outputted pixel
values. If the HSync and VSync the entire image will be shifted on the screen
in the direction in which scan lines travel by the number of pixels equal to the
number of operations in a pipelined division. This same kind of pipelining can
also be used to overcome problems with the matrix multiplications required for
transformations between RGB and XYZ.
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2.4.6 Color Blindness Compensation Utilizing the HSV Color Space

Any color can be broken down into a hue, saturation, and value. (the H, S, and
V of HSV, respectively) The difference between full color vision and vision as
experience by a colorblind can be modeled as a set of pairs of hues which appear
very similar (confusion pair), or even identical as a color blind individual. Both
of these occurances can be used to create a sort of easy to implement and quite
effective color blindness compensation. This is done by checking if the hue of
the current pixel belongs to a confusion pair and, if so, shifting encoding the hue
into the value and saturation of the color. Since every confusion pair has one
higher hue value and a lower hue value, a lower hue will always be encoded in
one way and a higher hue will always be encoded in another way. This ensures
that all colors of nearby hues are compensated for in a similar way, avoiding
jarring sudden changes in colors, allowing a non-colorblind individual to see the
image fairly normally.

3 Parts

Digilent Nexys Video Part#:410-316 - $490 or $290 (With Educational Dis-
count)
2-HDMI male to male cables - $12

4 Testing and Design Verification

4.1

4.2

5 Discussion

The goals for this project were to have it apply a color transformation on an
HDMI signal and operate at 1920x1080 resolution at 60Hz. To test this our
device was hooked up between a laptop and a monitor and was used for several
days. During this time no major issues arose.

6 Conclusions and Future Work

6.1 Signal Decoding/Encoding

The project at this point decodes and encodes the signal properly. One possible
improvement to the decoding is to automate the delaying of the signal. This
is currently done manually using switches on the development board. Another
improvement is to handle audio that is sent with the video data. Currently it
doesn’t support audio with the video.
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6.2 Color Transformations

The current transformations that are being performed are rough approximations
of what they should be, with future work these should be made much more
accurate.
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9 Appendix

9.1 Color Space Definitions

RGB The RGB color space stands for red, green, and blue. RGB is a color
space wherein colors are represented by values of red (∼665nm), green
(∼550nm), and blue (∼470nm) light. This color space is what is used for
most photographs, videos, cameras and electronic displays.

HSV The HSV color space stands for hue, saturation, and value. HSV is a color
space wherein colors are represented by their hue (the base color, e.g. red,
orange, yellow, green, etc.), their saturation (how close the color is to the
pure color and far from a gray color) , and value (how bright the color
is). Hues are represented on a 360◦ spectrum, with red (∼665nm) at both
0◦ and 360◦, orange (∼630nm) at 30◦, yellow (∼600nm) at 60◦, green
(∼550nm) at 120◦, blue (∼470nm) at 240◦, indigo (∼425nm) at 270◦, and
violet (∼400nm) at 300◦.

XYZ The XYZ color space is very similar to the RGB color space. It is also
a color space wherein colors are represented by values of red, green, and
blue. The difference in the XYZ color space is that the primary colors it
uses are based off which primary colors human eyes are actually sensitive
to. XYZ’s red is a range of hues ∼564–580nm instead of RGB’s ∼665nm,
XYZ’s green is ∼534–545nm instead of RGB’s ∼550nm, and XYZ’s blue
is ∼420–440nm instead of ∼470nm.

LMS The LMS color space is very similar to the XYZ color space since it has
the goal of modeling human vision. This combined with the fact that
the XYZ color space uses the wavelength bands which human eyes can
primarily sense, as the three primary colors, allows for easy transforma-
tion between the XYZ and LMS color spaces. Theses three colors with
differently weighed color responses are based on the three primary bands
of color from the XYZ color space, which are directly based on the three
bands of color that human eyes can perceive. The inherent way that LMS
simulates human color vision stems from the process of conversion into
LMS. The only step necessary is to use a Chromatic Adaptation Trans-
form (CAT) matrix which would map the primaries from XYZ color space
into the amount that they stimulate in the LMS color space. The problem
is that there is no definitive transformation matrix, though various Color
Appearance Models (CAMs) offer their of CAT matrices.
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